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Abst rac t - -Across  a coherent  interface, displacements are continuous, but some components  of large strain, 
rotation, stretching, spin, stress and rheology need not be so. This accounts for refraction of cleavage and other 
geological structures. 

The general theory of deformation and motion is used to analyze how discontinuities develop. A measure of 
discontinuity in total deformation gradients (strain and rotation) is the ratio, (K), of amounts of shear above and 
below the interface and in directions parallel to it. It is shown that (K) is equal to the ratio of simple shearings 
above and below the interface provided (i) the latter ratio is constant in time and (ii) no volume changes occur. 

These kinematic conditions are shown to hold in Newtonian fluids and incompressible neo-Hookean solids, 
where (K) is exactly equal to the inverse viscosity ratio, or to the inverse rigidity ratio. The conditions do not hold 
in general in Reiner-Rivlin fluids. In power-law fluids, the ratio of simple shearings is constant for two special 
classes of motion, one with little simple shearing along the interface, the other  with simple shearing alone; 
therefore,  the rheological contrast can be determined. 

The theoretical results can be used to determine rheological contrasts in nature or experiment,  provided there 
is some knowledge of  the nature of the flow laws that operate.  Under  these conditions, an interface is an inbuilt 
rheometer .  

INTRODUCTION 

INTERFACES between rocks of differing rheological 
properties exist at all scales in the Earth's crust, from 
that of grains embedded in a matrix, to that of igneous 
plutons surrounded by country rock. The very 
heterogeneity of the crust is responsible for the frequent 
occurrence of interfaces. Good examples occur in any 
stratified series of sediments, where microstructure and 
chemical composition are discontinuous at bedding 
surfaces. 

Rocks from tectonically deformed regions frequently 
show evidence of large ductile strains, with accompany- 
ing formation of tectonic cleavage, parallel or nearly 
parallel to principal directions of finite strain (see discus- 
sion by Williams 1977). At interfaces, the state of strain 
may be discontinuous. Thus, it is a common observation 
that cleavage refracts at coherent interfaces. The 
amount of cleavage refraction is potentially a useful 
measure of rheological contrast: the field geologist uses 
cleavage refraction in a qualitative way to estimate 
relative 'competence' of rock units and to identify graded 
bedding, which he then uses as a way-up criterion in 
structurally complex terrains. 

The purpose of this paper is to explore some quantita- 
tive aspects of large ductile strains at interfaces, with a 
view to determining rheological contrasts where pos- 
sible. Although geologically it might seem sensible to 
start by considering refraction of cleavage (or principal 
directions of large strain), there is not enough informa- 
tion in this alone to enable one to calculate rheological 
contrasts. Instead the focus here will be on refraction of 
passive markers (lines or planes) known to have been 
normal to an interface before deformation. The 
mathematics of this problem are simpler. 

Each rock type is assumed to be a continuous and 
homogeneous medium, separated from adjacent media 
by coherent interfaces. Coherence of an interface 
implies that certain parameters must be continuous 
across it, although others need not be so. Examples of 
parameters that must be continuous are (i) displace- 
ments (vector components both normal and parallel to 
the interface), (ii) certain tensor components of stress 
(shear components parallel to the interface and the 
normal component across it) and (iii) certain tensor 
components of large strain, infinitesimal strain or strain- 
rate (normal components parallel to the interface and 
shear components across it). Other stress or strain com- 
ponents may be discontinuous and hence the principal 
directions may refract across the interface. 

For Newtonian fluids, Treagus (1973, 1981) has shown 
that principal stresses refract by an amount that depends 
upon the viscosity ratio across the interface. A similar 
analysis is given by Goguel (1982) for ideal plastic 
materials. This paper will emphasize variation, not only 
of stresses or small strains, but of large strains. This 
makes the analysis applicable to a broad range of 
tectonic situations. 

The first part of this paper deals with the kinematics of 
an interface, that is, with (i) the total deformation and 
(ii) its time history, the motion. The second part con- 
siders mechanical aspects, including stress conditions 
and various models of rheological behaviour. 

KINEMATICS 

Much of the following theory and nomenclature is 
based on the excellent review by Truesdell & Toupin 
(1960). For the sake of clarity, some of their equations 
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Fig. 1. Deformation at an interface (stippled). (a) Undeformed state, with common coordinate frame, Z, and material 
frame X embedded in the interface such that X 2 is normal to the interface at point P. (b) Deformed state, with common 
coordinate frame, z, deformed material frame X, and new spatial frame x embedded in the interface, such that x 2 is normal 
to the interface at point P. (c) Enlarged view of P in undeformed state (a), showing elementary cubes above and below 
interface (stippled). (d) Enlarged view of P in deformed state (b), showing parallelepipeds above and below interface, that 

result from deformation of cubes (c). Symbols are defined in text. 

are rederived here,  but in a simplified form which results 
f rom using rectangular Cartesian reference frames. 
Similar expressions, but in more  general non-Cartesian 
form, have been used by Hobbs  (1971). 

After  an initial introduction (chapter  A) ,  Truesdell  & 
Toupin (1960) developed the field theory of kinematics 
of a continuous medium (chapter  B), including sections 
on deformat ion and motion.  This was followed by a 
discussion of singular surfaces (chapter  C). As an inter- 
face mathematical ly  is a special kind of singular surface, 
it is convenient  to follow Truesdell  & Toupin 's  approach.  

Deformation o f  a continuous medium 

To study this, imagine that  a grid X, is embedded  in 
the undeformed material  (Fig. la) .  After  deformation 
(Fig. lb) ,  the original grid is distorted and one can 
describe this distortion with the aid of a new grid, x. The 
two grids are compared  using a common Cartesian 

frame,  denoted Z or z according to whether  the un- 
deformed or deformed state is being described. For the 
analysis of an interface, it is convenient  if X and x are also 
taken to be Cartesian, but each parallel to the interface 
at different times and thus oblique to the common frame 
and to one another.  This simplifies the mathematics.  

Following Truesdell & Toupin (1960, p. 326), the X 
are taken to be material coordinates (which deform with 
the material)  and the x, spatial coordinates (which are 
fixed and not deformable) .  

Deformation (Truesdell & Toupin 1960, p. 243) is 
understood to mean  the mathematical  t ransformation 

X = X(x) ,  (1) 

whereas its inverse, 

x = x(X) ,  (2) 

is here termed the reverse deformation, for clarity. 
An element  of arc in the undeformed state, dX, 
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undergoes a change in length and orientation to become 
an element of arc, dx, in the deformed state. Using 
Cartesian tensor notation, this is expressed as 

d x  i "= x i , j d X j ;  dXs = X j ,  m d x m ;  (3) 

where xi.j = OxJOXj is a tensor of deformation gradients 
(Truesdell & Toupin 1960, p. 245) and Xs, m = OXj/OXm 
is the reciprocal tensor of reverse deformation gradients. 

A squared element of arc in the undeformed state, 

dS 2 = (dXj) 2, (4) 

becomes in the deformed state, on substituting (3) into 
(4), 

d S  2 = Cmp d x  m d x p ;  ( 5 )  

where 

Cmp = S j , m g j ,  p ( 6 )  

is Cauchy's tensor (Truesdell & Toupin 1960, p. 257), 
which is symmetric (Crop = cpm). If dS 2 is constant, then 
(4) describes an infinitesimal sphere in the undeformed 
state, and (5) describes the strain ellipsoid in the 
deformed state. The reciprocal of Cauchy's tensor is 
Finger's tensor (Truesdell & Toupin 1960, p. 263), 
defined as 

-1  Crop = Xm,~Xp,j. (7) 

Finger's tensor has the properties that (i) its proper 
numbers are the squares of the principal stretches, (ii) its 
proper vectors are the principal axes of the strain 
ellipsoid in the deformed state and (iii) it is expressed, by 
(7), in terms of the deformation gradients. See also 
Hobbs (1971) and De Paor (this issue). 

Deformation at an interface 

An interface, or internal boundary, is one example of 
the family of surfaces of discontinuity, or singular sur- 
faces (Truesdell & Toupin 1960, p. 492). It is a material 
surface which is the common boundary of two regions, 
R + and R- .  If • is a quantity which is continuous in each 
region and approaches definite limit values, ~+  or ~ - ,  
according to whether x approaches a point on the bound- 
ary from within one region or the other, then 

pI ,  l -= ,I , +  - q , -  ( 8 )  

is the jump of • across the interface. In general, the 
jump is a function of position along the interface. 

Singular surfaces may be classified kinematically by 
regarding the deformation, x -- x(X),  or its time history, 
the motion. 

The order of a singular surface, with respect to x, is 
defined as the order of the derivative of lowest order 
suffering a non-zero jump at the surface (Truesdell & 
Toupin, p. 517). In such a classification, an interface is a 
first order material singularity, because the deformation 
suffers no jump, but the deformation gradients may do 
SO. 

To illustrate this, choose for the undeformed state a 
Cartesian frame with origin at point P, such that X1 and 

X3 lie tangent to the interface (Fig. la). For the 
deformed state, choose a new Cartesian frame with 
origin at the same material point P, such that x, and x3 lie 
tangent to the interface (Fig. lb). But the lines )(i and X3 
continue to lie tangent to the interface, as the latter is a 
material surface; therefore 

X2,1 = X2 ,  , = x2, 3 = X2 ,  3 = 0 .  (9) 

Notice that the orientations chosen for X1 and xi are 
arbitrary within the interface. Also the angle between X 1 
and X3 is no longer necessarily a right angle in the 
deformed state and the material line X2 becomes oblique 
to the interface. 

Now consider two adjoining elementary cubes in the 
undeformed state (Fig. lc), one above and one below 
the interface, with edges along the reference frame and 
of lengths dX~. After a finite deformation (Fig. ld),  the 
cubes have become parallelepipeds, and the face they 
share, a parallelogram, lies within the interface; but the 
edge containing )(2 is no longer normal to the interface, 
the angle between x 2 and )(2 being 4,. If the projections 
of 4, onto the coordinate planes x~x2 and x3x2 are 4,,2 and 
4,32, respectively, then the tangents of these angles are 
(Fig. ld) 

KI2 = tan 4,12 = xl ,2 /x2 ,2 ,  (10) 
K32 = tan 4'32 = x3,2/x2,2. 

Thus, 4',2 is the shear (Truesdell & Toupin, p. 256) of 
the pair of lines xl and PA (the projection of X2 onto the 
plane xtx2). Similarly 4'32 is the shear of x3 and PB (the 
projection of X2 onto the plane x3x2). The tangents, K12 
and K32, are the amounts of these shears (Truesdell & 
Toupin, p. 293). Many authors would call K12 and/£32 
shear strains, but for large strains this nomenclature can 
lead to confusion with the shear components of the 
various strain tensors. 

The amounts of shear, K,2 and K32, are measures of the 
state of strain at the interface. This can be shown using 
Finger's tensor. Because of the vanishing deformation 
gradients (9), the second column of cT, p 1 in (7) reduces to 

Cl  ~ z Xl,2X2,2 ; C2 ~ ~ X2,2X2,2 ; C3 ~ ~ X3,2X2,2 ; (11) 

whence (10) becomes 

K p  -1 - 1 .  -1 -1  = = C32/C9. ~ . e l  2/C2 2, K32 __ (12) 

Thus, it is a simple matter to calculate K,2 and K32, 
given the strain in the deformed state. 

Of the non-vanishing deformation gradients, those 
suffering no jump at the interface are x,,1, x~,3, x3,1 and 
x3, 3 . These govern the state of strain within the interface, 
in other words, the shape of the stippled parallelogram 
in Fig. l(d). For the analysis that follows, a convenient 
way of comparing values of a quantity q' across the 
interface is to use not the jump, but the interface ratio, 
defined here as 

('~') = 'I*+/'~ -. (13) 

Thus, for the deformation gradients that suffer no 
jump, 
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(Xl , t )  = (X,,3) = (X3,1) = (X3,3) = 1. (14) 

The other non-vanishing deformation gradients, x~,2, 
x2.2 and x3.2 may suffer jumps at the interface. The 
gradients x~,2 and x3,2 represent simple shears parallel to 
the interface, whereas x2,2 represents a simple extension 
normal to the interface. Thus the deformation at an 
interface may be analysed in the same way as that in an 
ideal banded structure (Ramsay & Graham 1970, 
Cobbold 1977). 

From (10), it is clear that K12 and K32 may both suffer 
jumps at the interface, as a result of a jump in x2.2, or 
jumps in x~,2 and x3,2. To study how these jumps build up, 
it is useful to consider the time history of deformation, 
that is, the motion. 

Motion o f  a continuous medium 

The motion is the family of deformations, 

x = x(X, t), X = X(x, t), (15) 

where t is the time. In their basic review, Truesdell & 
Toupin (1960, pp. 326-437) considered a fixed frame x, 
which at time t = 0 becomes X, so that 

x =f (z ) ,  X = f ( Z ) ,  (16) 

the function f being identical in both parts of equation 
(16). The coordinate scheme used in this paper is slightly 
different in that x and X, although both Cartesian, are 
related to z and Z by different amounts of rigid rotation 
(Fig. 1). Nevertheless, because x and X are Cartesian, 
the basic results of Truesdell & Toupin are valid to 
within an overall rigid rotation (Truesdell & Toupin, p. 
440), which of course does not modify the strains 
accumulated at the interface. 

For a given material particle, X, the velocity, x, is the 
rate of change of spatial position: 

±k = Ox,, (17) 
Ot 

where X is held constant in time and space. From (17) 
and the first of (15), 

k = x(X, t), (18) 

so that velocity is a function of time for a given particle. 
However, X may be eliminated using the second of (15), 
giving 

± = ±(x, t), (19) 

where velocity is a function of time for a given place. A 
function such as (18), where X and t are the independent 
variables, is said to be in the material description; 
whereas a function such as (19), where x and t are the 
independent variables, is said to be in the spatial 
description. 

Now consider the rate of change of a Cartesian tensor, 
A, of order n. The material derivative of A, A, is its rate 
of change relative to an observer situated upon a moving 
particle, so that X is constant. Thus for the material 
description, where A = A(X, t), 

_ OA(X,ot t) x=co,~t - DA,Dt (20) 

whereas, for the spatial description, where A = A(x, t), 

A _ O A . . .  (x, t) x=const " ' "  O-t + m...,qJgq. (21) 

The term on the far right of (21) is known as the 
convection of A. Equation (20) is sufficient to find the 
material derivative of the deformation gradients: 

• D ( O x i l _  OJC i _ OJC i OX  m 

t) = fftt  ox+/ ox+ ox,,, ox+ - 
(22) 

where the chain rule has been used. Equations (22) show 
that the rates of change of the deformation gradients 
depend upon the deformation gradients themselves and 
upon the velocity gradients, ki, m (see also the discussion 
by Ramberg 1975). The latter can be expressed as the 
sum of a symmetric tensor, d, and an antisymmetric one, 

ki, m = dim + (.Dim. (23) 

As shown in detail by Truesdell & Toupin (1960, pp. 
325-374), d, the stretching tensor, represents a rate of 
pure strain, whereas ~,  the spin tensor, represents a rate 
of rigid rotation. 

Motion at an interface 

Because the deformation suffers no jump at the inter- 
face, neither does the motion, nor its time-derivative, 
the velocity. 

Of the velocity gradients, the following vanish because 
of the choice of spatial coordinate frame (x2 always 
perpendicular to the interface): 

"~2,1 = "~2.3 ~--- 0 .  (24) 

Of the non-vanishing velocity gradients, kl.~, k~,3, ,t3.~ 
and X3, 3 suffer no jumps, so that 

(J[~l.,) = (-~1713) = (Jc3,,) = (-~3.3) = 1. (25) 

The remaining velocity gradients, k~.2, X2,2 and ±3.2, may 
suffer jumps across the interface. 

Similarly, the material derivatives of the deformation 
gradients that may suffer jumps across the interface are 
Xl,2,  X2,2 and X3, 2. Because of the vanishing velocity 
gradients (24), expansion of (22) with J = 2 yields 

JCI, 2 ~ .~l.lXl,2 Jr .~1.2X2,2 -[- .~1.3X3,2, 

' X2, 2 = JC2.2X2,2, (26) 
X3,2 = Jf3,1Xl,2 "[- J73.zX2,2 -~- JC3,3X3,2' 

The material derivatives of K~2 and K32 can be obtained 
by noticing that in (10) they are functions of the deforma- 
tion gradients and therefore of X and t. Using (20), the 
quotient rule for partial differentiation and (22), 

g12 = (Jfl , lxl .2 + Jgl,2X2.2 + Jc i . 3x3 ,2 ) / x2 ,2  

- -  (JC2,1Xl, 2 + JC2.2X2, 2 + JC2.3X3,2)XI ,21(X2,2)  2.  (27) 

Simplifying and using (10) and (24), 
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KI2  = KI2(JCI,,  - -  22,2) "q- 21. 2 + K32.~1.3. ( 2 8 )  

Similarly, 

K32 = K32(Jc3,3 - 22.2) -{- 23, 2 -t- g12x3.1 . ( 2 9 )  

In equations (28) and (29), 2~,2 and 23,2 are the amounts 
o f  simple shearing, or rates of simple shear, with shearing 
planes parallel to the interface and shear directions 
parallel to xl and x3; whereas/(712 and i/(32 are rates of 
change of total amounts of shear. 

If the motion is confined to the xlx  2 plane, (28) 
reduces to 

/(12 = K1~(/¢,.1 - 22.2) + 2~.~, (30) 

which expression has been derived before (Bayly 1964, 
Cobbold 1976, Bayly & Cobbold 1979), although not as 
rigorously as in the present treatment, where it is shown 
to be exact. The geometrical significance of (30) can be 
appreciated by considering two limits. 

( i )  If 21.1 = 2:,:, the motion is a simple shearing, 21,2, 

plus a uniform dilatation (rate of dilation). Equation 
(30) reduces to//£,2 = 2,.2, so that K,2 changes by simple 
shearing alone. A uniform dilatation has no effect on 
angles. 

(ii) If &2 = 0, (30) reduces to 

/~712/K,2 = Xl.l - 22.2 = / ~ I / A I  - /~2/A2, (31) 

where a is the stretch, or final length divided by original 
length (Truesdell and Toupin 1960, p. 255). Integration 
of (31) yields 

KIJK,2Io = a,/a2, (32) 

where KL2I, is a value of K,2 before the stretches, & and 
A2, are imposed. Equation (32) is a well-known relation- 
ship for change in angle due to plane strain (see Ramsay 
1967, p. 67). Thus, (31) shows how K~2 is sensitive to the 
differential simple stretching, 2,.t - x2,2. In general, the 
effects of simple shearing and simple stretching are 
additive (equation 29) because they are rates, that is, 
derivatives of the total deformation. 

In three dimensions, the general equations (28) and 
(29) are almost of the form (30) and valid each for one 
coordinate plane; but there are additional terms, K323c,.s 
and K~2,t3.~, which result from shearing within the plane 
of the interface. 

Now consider what conditions are necessary or 
sufficient to ensure that 

(K12) = (K32) = R, (33) 

where R is a constant throughout time, but not space; 
thus the problem is to find conditions such that the 
interface ratios of K~2 and K32 remain constant and both 
equal to R. From the definitions (10) and from (33), 
sufficient (but not necessary) conditions are 

(Xl .2)  = (X3,2) = R; (X2,2) = 1. (34) 

On writing out each of (34) in full and taking the 
material derivatives (Appendix), 

(2,.2) = (232) =R; (22,2) = 1. (35) 

Necessary and sufficient conditions upon the velocity 
gradients, for (34) and (35) to hold, are derived in the 
Appendix. They are 

(±,.2) = (±32) = R; (±2.2) = 1. (36) 

From the above argument, conditions (36) are 
sufficient, but not strictly necessary, to ensure (33). 
Thus, for the interface ratios of finite amounts of shear, 
(K~2) and (K32), to have a constant value R throughout 
the motion, it is sufficient that (i) the ratios (2~.2) and (23.2) 
of simple shearings parallel to the interface retain a 
constant value R and that (ii) the stretching, 22.2, normal 
to the interface, suffer no jump. 

From the definition of the spin, to, as an antisymmetric 
tensor, it is necessary that w,, = (-022 = (-1033 = 0. Also, from 
(23), (24) and the symmetry of dim , 0)21 = -0)12 = - d r 2  

and o)32 = -w32 = - 6 3 2 .  Therefore, 

21.1 = dn, 21,2 = 2dl2, 21.3 = 613 + ('013, 

22, I = 0 ,  22, 2 = d22 , 223  = 0 ,  

23,, = dl3 - w13,232 = 2d32, 23.3 = d33. (37) 

Substitution of (37) in (36) yields 

(d,2) = (d32) = R; (d22) = 1. (38) 
The dilatation (rate of dilation) is 

dkk = dt~ + 42 + d33. (39) 

As 21.1 = d,, and 23.3 = d33 suffer no jumps at the interface 
(equations 25), the second of (38) implies that the 
dilatation suffers no jump; in other words 

(dkk )  • 1. (40) 
Before examining the mechanical conditions under 

which (38) may hold, it is worth exploring some 
geometrical implications of (33). 

First, ifx2,2 + = x2, 2 -  and ( X l , 2 )  = (X3.2)  = R, the axes x2, 
X~ and X2 all lie in one plane (Fig. ld). Thus, if the 
spatial frame is rotated about x2, until X~ and X~ lie in 

+ = x3.2 = 0 and (K,2) measures the plane x~x2, then 2 3 .2 
the refraction of X2. Otherwise, if the spatial frame is 
rotated about x2 until x 3 coincides with X3, then (K~2) 
measures the dihedral refraction of the plane X3X 2. 
Finally, if the spatial frame is rotated until x~ coincides 
with XI,  (K32) measures the dihedral refraction of the 
plane Xt X2. Thus, R may be obtained by measuring the 
refraction of any line or plane that was normal to the 
interface before deformation. 

M E C H A N I C S  

Following Truesdeli & Toupin (1960, p. 543), the 
stress tensor is denoted t. To preserve the balance of 
forces at a coherent interface, the following stress com- 
ponents suffer no jump: 

(t12) = (t22) = (t~2) ~- 1. (41) 

This completes the analysis of stress. The next step is 
to consider rheology. 
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So as to satisfy conditions (40), only incompressible 
materials will be considered. As the spatial axes xt and x3 
are chosen arbitrarily within the interface, without refer- 
ence to any specific material lines, the material must 
have at least a uniaxial symmetry of rheological proper- 
ties (transverse isotropy) about the interface normal, x2. 
This class of symmetry includes spherical symmetry (full 
isotropy) as a special sub-class. 

In the simple rheological models that follow, the 
material is assumed to be incompressible and fully 
isotropic. 

Incompressible  neo-Hookean  elastic solid 

In the incompressible neo-Hookean model (Truesdell 
& Noll 1965, p. 350) the stress t is directly proportional 
to the finite strain, which is elastic and fully recoverable: 

ot~j = G oC~l; IIIoc-, = 1; (42) 

where 

ot~i = tq - t~ijtkk (43) 

is the deviatoric stress tensor, G is a constant (the rigidity 
modulus) and 

oCTj I = C~) 1 - -  6ijc~lk (44) 

is the deviatoric part of Finger's tensor, defined in (7). 
The third invariant, IIIoc-,, is equal to unity in (42) 
because there is no volume change. 

Expansion of (41) yields, for the shear components, 

ot~2 = t,2 = Gc;~; ot32 = t32 = Gc3~. (45) 

Substitution of (45) into (41) gives 

(c7~) = (c3~) = (l/G). (46) 

As the material is incompressible and the area change 
within the interface suffers no jump, then 

(&.2) = 1. (47) 

Substitution of (46) and (47) into (11) gives 

( X l , 2 )  = ( X 3 , 2 )  = (l/G); ( X 2 , 2 )  = 1, (48) 

which are of the form (34) and sufficient to ensure that 

(K,2) = (K30 = (l/G). (49) 

Thus, in an incompressible neo-Hookean model, the 
ratios of finite amounts of shear are at all times equal to 
the inverse rigidity ratio. This very simple result provides 
one with a powerful method for determining rigidity 
ratios in real physical models made from neo-Hookean 
rubberlike materials. For real rocks, where recoverable 
elastic strains of more than 4% or so have never been 
reported, the result (49) is not likely to be useful. 

Newtonian f luid 

A Newtonian fluid is by definition isotropic and incom- 
pressible. The rheological behaviour is completely 
specified by the equations of state (flow law) 

otij = 2tzdo; dkk = 0; (50) 

where /z is a constant scalar, the shear viscosity. For 
shear components, (50) gives 

ot~2 = t12 = 2/xd,2; ot32 = t32 = 2/*d32. (51) 

Substitution of (51) into (41), with dkk = 0 in (39) 
yields (see also Treagus 1973, 1981) 

(d,2) = (d32) = (l//x); (d=) = 1, (52) 

which is of the form (38) because/z is constant. 
Thus Newtonian rheology on both sides of the inter- 

face is sufficient to ensure that the finite ratios (K,2) and 
(/(32) remain constant; conversely, measurement of 
these ratios yields the inverse viscosity ratio, (1//x). 
Current work with H. Hugon shows that this simple 
result provides a powerful method for measuring or 
checking viscosity ratios in real physical models. Further 
more, the long-term creep of rocks may be approximated 
by Newtonian behaviour, and the method may be applic- 
able to determining viscosity ratios at natural interfaces. 
It also provides a basis for predicting strain patterns at 
interfaces (Treagus, this issue). 

Reiner-Rivl in  f luid 

A Reiner-Rivlin fluid is incompressible and isotropic 
with flow-law (Truesdell & Noll 1965, Hobbs 1972, 
Ferguson 1979) 

otij = 2/~dq; dkk = 0; (53) 

where /z, the shear viscosity, is not constant, but a 
function of the second or third principal invariants of the 
stretching tensor: 

I I d =  d~d: + d2d3 + dsdL = -1/2(d] + d 2 + d~), 
(54) 

I I I a =  d,d2d3. 

Therefore, t~ is also, in general, a function of position 
within the deforming fluid. 

A fairly wide class of behaviours may be obtained by 
taking/z as a function only of the second invariant, IIa. 
Thus, define an octahedral shear stress, r, and an 
octahedral shearing, d: 

"r 2 = 1/20t 0 otq = - I I , ,  (55) 
d e = 1/2dodi j = - l id .  

Expansion of the second equation gives 

2d 2 = d{~ + d~2 + d23 + 2d]2 + 2d~2 + 2d~,. (56) 

Substitution of (53) into (55) yields the simple equation 

r = 2/*d, (57) 

where/x is a function of d, or of r (Nye 1953). 
At an interface between two Reiner-Rivlin fluids, 

from (53) and (41), 

(d,2) = (d32) = (l/ix); (d~2) = 1. (58) 

If t* is taken as a function of d, then from (56) it is clear 
that (l/ix) is not generally constant. Thus, conditions 
(38) are not satisfied and the viscosity ratio cannot in 
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general be obtained by measurement of the finite ratio of 
amounts of shear. 

To see this more clearly, consider a well-known special 
case of the Reiner-Rivlin fluid, that is the power-law 
fluid, where 

tz  = d ( l l n ) - l / 2 A  TM, (59) 

so that, from (58), 

d = Az n, (60) 

n being a constant, the stress exponent, and A being 
another constant. This is the Weertman (1968) equation, 
observed in simple laboratory experiments on poly- 
crystalline rock, under conditions where the deforma- 
tion mechanism is dislocation creep and the stretch 
history is constant. Although the use of this model has 
been criticized for more complex stretch histories 
(Ferguson 1979), it is so popular at the moment that its 
effects on interfaces are worth examining. 

From (59) and (56), it is clear that in general (1//z) is 
not constant; but it does have two limiting constant 
values, for two special classes of motion. Thus, if (n) = 1 
and 

d , f l d  = d32/d = 0, (61) 

the motion includes no shearing upon shearing planes 
parallel to the interface. From (61), (56) and (59), 
(d) = 1 and 

(1//z) -- (A)1/,. (62) 

Thus, the inverse viscosity ratio locally has a constant 
value if the motion locally includes no shearing along the 
interface. Under these conditions, K12 and K32 never 
depart from zero; but if the motion tends towards this 
limit, the finite ratios of K,2 and K32 will tend towards the 
limiting value given in (62). 

The second limiting constant value of the inverse 
viscosity ratio occurs if 

d l , / d  = d2 f ld  = d33[d = d31/d = 0. (63) 

This means that the motion is locally a simple shearing 
parallel to the interface within which there is no surface 
straining. From (63), (56), (58) and (59), 

(1//z) = (A). (64) 

Thus for simple shearing the finite ratios of K~2 and K32 
will locally have the value (A). 

In general, the motion at an interface includes com- 
ponents of both simple shearing and surface straining, so 
that the viscosity ratio is not necessarily constant in time 
or space. If there is no jump in n across the interface, the 
inverse viscosity ratio is in the range between (.4) and 
(A) TM. By estimating these limiting values, one can 
estimate n. If n = 1, the fluid is Newtonian and (62) and 
(64) yield a unique viscosity ratio, which is constant. If n 
is very large, the rheological behaviour approximates 
that of an ideal rigid-plastic model. The viscosity ratio 
tends to unity (equation 62) if there is little shearing 
parallel to the interface: under these conditions the 

interface no longer has any mechanical or kinematic 
significance. In contrast, if shearing predominates, the 
inverse viscosity ratio (equation 64) tends to a limiting 
value (A). Finally, for moderate values of n, the viscosity 
ratio is closest to unity at points where there is least 
shearing along the interface: the non-linearity of the 
power-law inhibits the development of strain discon- 
tinuities at these points. 

CONCLUSIONS 

(1) At a coherent interface there may be jumps in the 
amount of extension normal to the interface and the 
amount of shear parallel to it; that is, discontinuities in 
total strain and rigid rotation. 

(2) At a given instant of time, there may be jumps in 
the stretching normal to the interface and the shearing 
parallel to it. 

(3) The ratio (K) of total amounts of shear above and 
below an interface is equal to the ratio of amounts of 
simple shearings, provided the latter ratio is invariant 
with time and that there are no volume changes. 

(4) In neo-Hookean elastic solids, the finite ratio (K) 
is equal to the inverse rigidity ratio at the interface. 

(5) In Newtonian fluids, the inverse viscosity ratio is 
equal to the ratio of amounts of simple shearings and the 
viscosity ratio can therefore be uniquely determined by 
measurement of(K) alone. 

(6) The ratio of shearings is not necessarily invariant 
with time in Reiner-Rivlin fluids, so that the viscosity 
ratio is not uniquely determined by measurement of (K) 
alone. 

(7) In power-law fluids, the viscosity ratio is constant 
for two special classes of motion, one with no simple 
shearing parallel to the interface, the other with simple 
shearing alone. The ratio of material constants, (A), is 
uniquely determined by measurements of (K) at a site 
known to have undergone simple shearing alone; 
whereas the stress-exponent, n, if constant across the 
interface, is uniquely determined by further measuring 
(K) at a site known to have undergone almost no simple 
shearing. 

(8) The above theoretical results are applicable to 
measurement of rheological contrast in nature or in 
experimental models, where there are passive markers 
known to have been normal to an interface before 
deformation, or where there is any other information 
allowing one to calculate the amounts of shear parallel to 
the interface. In this sense, an interface is an inbuilt 
rheometer. 
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A P P E N D I X :  N E C E S S A R Y  A N D  S U F F I C I E N T  

C O N D I T I O N S  F O R  (x,.2) = (x3,2) = R; (x2,2) = 1 

The problem is to find necessary and sufficient conditions upon the 
velocity gradients, ki.j, such that the deformation gradients satisfy at all 
times 

(XI ,2)  = (X3,2)  = R; (x2,2) = 1, (A1) 

where R is a constant. 
Written out in full, equations (A1) are 

X,,2 + = Rxl.2-; X3,2 + = R X 3 , 2 - ;  X2.2 + = X:z,2-. (A2) 

The material derivatives of (A2)+are 
Xa.2 + = RXt.2-; X3,2 = R±3.2-; k2.2 + = J72,2- ;  (A3) 

whence (equation 35) 

(JCI,2) = (Jl73,2) = R ;  (X2,2) = 1. (A4) 

Now the material derivatives in (A4) can be expressed in terms of the 
deformation gradients and velocity gradients (equation 26): 

JTi, 2 = JTt iXl, 2 -I- .ifl.2X2, 2 -1- .iCL3X3.2, 

±2.2 = ±2.:x2.2, (A5) 
jr3. 2 = JC3.1XI. 2 -~- JC3.2X2, 2 ~- Jf3.3X3,2 . 

Substituting the second of (A1) and the second of (A4) into the second 
of (A5), 

(k2.2) = 1. (A6) 

Thus, (A6) is a necessary condition to ensure the second of (A1). 
Furthermore it is sufficient, for substitution of (A6) into the second of 
(A5) yields 

(±2,2) = (x2.2). (A7) 

The solution of (A7) is 

(x2,2) = constant. (A8) 

With the conditions that at time t = 0, x2,2 = 1, (A8) becomes the 
second of (A1) and sufficiency is proved. 

The first and third of equations (A5), written for both sides of the 
interface, are 

~1.2 + ~ j£1.1Xl,2 + ~t- j(i,2+X2.2 ~t- ~1,3X3,2 + ,  

J:l,2-- = Jrl . lX1.2- "1- Jrl,2-X2, 2 + JTt,3X3.2- , (A9) 
j73,2 + = j73,1XI,2 + "q- X3.2+X2,2 -]- .~3.3X3,2 + ,  

X3.2- = Jl~3.lXl,2- "~- "~3,2-X2,2 -~ X3,3X3.2 - "  

Substituting the first two of (A3) into the first and third of (A9) and 
multiplying the second and fourth of (A9) by R, 

R.~l.2- = R±~.~xl.2- + Xl.2+X2.2 "t- R.~13X3.2-, 
R.~I,2- = R.~l.ix~.2- + RJcl,2-x2.2 + RJcl.3x3,2-, (A10) 
RJ:3.2- = RJc3.1xl,2- + -J~3.2+X2,2 "~- RX3.3X3,2-, 
Rk3. 2- = R.~,3dxt. 2- + RJ:3.z-x2. 2 + RJ%.3x3.2-. 

Comparing equations (A10) in pairs, 

Xl,2 + = RJCl,2- ; di73,2 + ~-- RJc3,2- ;  ( A l l )  

whence 

(•t2) = (13:) = R. (A12) 

These are therefore necessary conditions to ensure the first of 
equations (A1). Sufficiency may be demonstrated using a recurrence 
method. 

Assume first of all that (A1) holds at a given moment of time, tin. 
Then substitute (A1) and (A12) into (A9). Corresponding pairs of 
terms on the right hand side of each pair of equations (A9) are in the 
ratio R; therefore (A4) holds at time tm. By analogy with equations 
(A7) and (A8), it follows that (A1) must hold at all t > t,,. In other 
words, should (A1) hold once, it will hold for ever after. Now consider 
what happens at time t = 0. By definition, x,,2 = x3.2 = 0 at the onset of 
deformation, so that (x,2) and (x3.2) are indeterminate; but substituting 
the null values into (A9), it yields (A4). Therefore, (A4) is also valid at 
time t = 0. Integrating over a small time increment, it is clear that the 
first (infinitesimal) values of x,,2 and x3,2 will have interface ratios equal 
to R, in other words (A1) holds. But it has already been shown that if 
(A1) holds once, it will hold for ever after. Therefore, it has been 
shown that (A12) and (A6) are sufficient conditions to ensure (A1). 
Earlier, it was shown that they are necessary. 

A more formal proof of sufficiency is available if motion is confined 
to the x,x2 plane. Equations (A9) reduce to 

J~l.2 = -~I,IX,,2 "1- XI.2X2.2- (A13) 

With x,.2 = u(t), k,., = f(t) ,  2,.2x2,2 = g(t), (A13) becomes 

Du 
Dt uf(t) = g(t), (A14) 

which is a general linear first-order differential equation in u. Using the 
integrating factor, 

Q(t) = exp f - f ( t )  dt = exp l - 2~.~ dt, (A15) 

the general solution of (A14) can be written 

Qu = I Qg(t) dt +b, (A16) 
d 

where b is a constant. At time t = 0, Q = 0 and therefore b = 0. Hence 

[% Qx,.2 = k, 2x2.2 dt. (A17) 
dO 
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But from (A15), (Q) = 1. Therefore, from (A17), (A8) and (A12), 

where R, being a constant, has been taken out of one of the integrals. 
The first and third of equations (A5) are a system of 2 general linear 
first-order differential equations in x~.2 and x3.2. Apparently, no 

standard method is known for finding a solution to such a system in 
terms of elementary functions, if such a solution exists at all. There- 
fore, no formal proof of sufficiency is offered for the three-dimensional 
equations (A5). Nevertheless the recurrence method described earlier 
appears to be rigorous enough. It may also be applied directly to 
equations (28) and (29), in other words to show that (A6) and (A12) 
are sufficient (but not necessary) conditions to ensure that the finite 
amounts of shear, K~2 and K32, have constant interface ratios equal to R. 


